Articles 2018-02-22T22:01:35+00:00

Articles

Using Lasers to Produce Faster Electronics and Better Solar Cells

Recently, the concept of integrating photonics and electronics, with the goal of producing faster electronics and more effective solar cells, has been attracting a significant amount of interest. To properly understand this idea, the small-scale electronic and photovoltaic processes must be investigated on the atomic or molecular level. Prof. Hrvoje Petek and his research group at the University of Pittsburgh are aiming to do just that, operating under the notion that processes cannot be controlled until they are adequately measured. To perform their investigations, the research group used a two-photon photoemission spectroscopy method, enabled by IMPULSE laser and NOPA from Clark-MXR. The researchers specifically examined processes occurring at [...]

By | Feb 19, 2018|

Using Label-free imaging techniques to further understanding of Multiple Sclerosis

Multiple Sclerosis (MS) is an autoimmune inflammatory disease that affects nearly 2.3 million young adults worldwide. In cases of MS, the immune system promotes an attack on the central nervous system (CNS), often leading to disability and degeneration. The MS lesion is traditionally considered the leading indicator of CNS damage and thus has been studied for decades through various clinical pathological methods. However, it has been found that surrounding regions in the brain, known as 'normal-appearing' white matter (NAWM), also present some abnormalities in MS cases. Label-free imaging techniques, such as coherent anti-Stokes Raman scattering (CARS) and Stimulated Raman scattering (SRS) have proven to be effective tools for [...]

By | Feb 18, 2018|

Burning Coal with Femtosecond Laser Pulses

Since before the industrial age, graphite materials have played an essential role in daily life: their properties are seen in everything from burning embers to the first electric bulbs. Even as technologies advance, graphite materials continue to pique interest in the human mind.  One example is graphene, a two-dimensional material with remarkable optical and electronic properties, which has sparked a renewed interest in the field of semiconductor research, particularly in studies of solar energy conversion. Prof. Hrvoje Petek and his research group at the University of Pittsburgh are studying graphene to understand its hot electron dynamics.  The researchers are particularly interested in how this material can be used [...]

By | Sep 21, 2017|

Progress of Industrial Femtosecond Machining – A Rich 20-year History

Micromachining with femtosecond lasers (also known as ultrafast or ultra-short pulse lasers) is gaining popularity due to several advantageous properties, including the nearly athermal, or "cold," ablation process. For industries demanding smaller and more precise parts, this technology offers several benefits, including higher yields, tighter tolerances, little to no collateral damage, and no post processing. While femtosecond lasers have begun gaining significant attention in recent years, they were originally showcased 20 years ago at the Laser World of Photonics in Munich, Germany by Clark-MXR, a company founded in 1992 in Dexter, MI. With the help of few other collaborators, Clark-MXR presented the first live demonstration of industrial femtosecond [...]

By | Jun 21, 2017|

Catching Molecules in the Act

Chemical reactions are characterized by the motion of atoms; transformation of chemical compounds, reactants, and raw materials is therefore governed by molecular vibrations. While the motion of the atoms is easily seen at the beginning and end of a chemical reaction, the molecular changes occur too rapidly in the middle of the process, making them impossible for humans to observe. With novel techniques that employ the use of ultrafast lasers, however, we can essentially freeze the chemical reaction. This allows us to thoroughly observe the intermediate steps of the chemical reaction that were previously incomprehensible, even permitting control of these reactions. Surface Enhanced Femtosecond stimulated Raman Spectroscopy (SE-FSRS) [...]

By | May 31, 2017|

Synchronization of a 25 MHz Magellan Yb-doped Fiber Oscillator with a Streak Camera from Optronis

Clark-MXR, Inc. is pleased to announce the first demonstration of a Yb-doped femtosecond fiber oscillator running at 25 MHz successfully synchronized with a Streak camera. This is a result from a collaboration with the companies Optronis GmbH (Dr. Patrick Summ, summ@optronis.com) and Horiba Scientific GmbH (Dr. Hans-Erik Swoboda hans-erik.swoboda@horiba.com) from Europe. The Magellan is a telecom-qualified single emitter diode-pumped Yb-doped femtosecond fiber oscillator. A Streak camera from Optronis, Optoscope SC10, with Synchroscan sweep unit was triggered by the Magellan oscillator and different triggering set-ups were tested for best synchronization conditions and temporal resolutions. This will open up a whole new research area that was unavailable until now to [...]

By | Jan 16, 2017|

THE LATEST

ARCHIVE